Необходимые микроэлементы для растений. Микроэлементы, необходимые для развития растений

Для хорошего, полноценного питания растениям, кроме главных - азота, фосфора, калия и магния - важны такие элементы, как бор, цинк, марганец, молибден, иногда йод, кобальт, никель, которые называются микроэлементами, т.к. требуются растениям в количествах, измеряемых тысячными и даже стотысячными долями процента.

Микроэлементы защищают растения многих заболеваний, усиливают процессы оплодотворения, плодообразования, усвоения питательных веществ, содействую тем самым лучшей урожайности, питательной ценности плодов и овощей (повышается содержание витаминов, крахмала и сахара). Ниже описано, насколько важны отдельные микроэлементы для растений.

Бор увеличивает количество завязей, повышает содержание в плодах таких витаминов, как А и С, излечивает заболевания плодов - «опробкование» и защищает их от преждевременного опадения. Если бора недостаёт, то у растений отмирает верхушечная почка, появляется хлороз (пожелтение) верхних листьев, ослабляется цветение, плоды приобретают уродливую форму. Чаще всего от недостатка бора страдают цветная капуста, свекла и плодовые растения, особенно растущие на сильно известкованных и карбонатных землях.

Марганец

Марганец играет очень важную роль в процессах фотосинтеза, дыхания растений, в процессе появления витамина С и сахаров. При нехватке марганца на верхних листьях возникают светло-зеленые либо серые пятна, листья желтеют между жилками, в дальнейшем наблюдается отмирание поврежденных тканей. Марганцевое голодание чаще проявляется на картофеле, капусте, бобовых, а из плодовых растений - на вишне, малине, абрикосе, сливе, яблоне, персике, чаще на известкованных и карбонатных землях. На кислых же землях может быть даже переизбыток данного микроэлемента.

Медь улучшает образование белка в растениях, повышает устойчивость к морозам, засухо- жаростойкость, активизирует сопротивляемость растений к грибным и вирусным заболеваниям. При нехватке меди на молодых частях растений наблюдается хлороз листьев, потеря ими тургора и увядание.

Болезнь яблони, вызванная недостатком данного микроэлемента, называется «летнее усыхание». Более чувствительные к недостатку меди такие плодовые, как яблоня, груша и слива. Меди недостаёт в торфяных и песчаных сильнокислых землях.

Цинк входит в состав большинства растительных ферментов, которые участвуют в процессах оплодотворения, дыхания, синтеза белка и углеводов. Главные признаки цинкового голодания - это пожелтение и пятнистость листьев, их измельчание и заметная асимметричность. Оно чаще заметно у вишни, абрикоса, яблони, груши, сливы, винограда и кукурузы.

Не богаты цинком почвы с нейтральной и щелочной реакцией, которые обычно встречаются в Средней Азии и южных районах страны, а также в Прибалтике. Нехватка цинка проявляется на известкованных и карбонатных почвах при внесении больших доз фосфорных удобрений.

Молибден

Молибден важен для усвоения азота из воздуха клубеньковыми бактериями, которые развиваются на корнях бобовых растений, а также бактериями, свободно живущими в земле. Участвует он и в азотном обмене растений.

Когда растениям не хватает молибдена, у них нарушается азотный обмен, что, в свою очередь, приводит к ослаблению зеленой окраски листвы, возникновению пятнистости или же пожелтению края листьев (у огурцов). Очень чувствительны к молибдену цветная и кочанная капуста, салат, томаты и бобовые культуры.

Этого микроэлемента бывает недостаточно на кислых почвах с рН меньше 5. При внесении извести необходимость растений в молибдене понижается либо пропадает вообще.

Растения получают микроэлементы из земли, но, оказывается, не все из них могут быть использованы. Так же не во всех почвах они содержатся в необходимых пропорциях. Поэтому огородники вместе с обычными удобрениями, в состав которых входят азот, фосфор, калий, задействуют и удобрения с микроэлементами.

Большое количество микроэлементов находится в древесной золе и навозе. Если их нет, то можно использовать минеральные удобрения.

Микроэлементы в удобрениях содержатся в легко подвижном, усвояемом состоянии в виде хелатов.

При применении комплексных удобрений с микроэлементами либо только микроудобрений важно строго соблюдать инструкцию по применению, не забывая, что переизбыток их тоже вреден для растений, как и их недостаток.

Оптимизация питания растений, повышение эффективности внесения удобрений в огромной степени связаны с обеспечением оптимального соотношения в почве макро- и микроэлементов. Причем это важно не только для роста урожая, но и повышения качества продукции растениеводства Следует учитывать также и то, что новые высокопродуктивные сорта имеют интенсивный обмен веществ, требующий полной обеспеченности всеми элементами питания, включая и микроэлементы.

Недостаток микроэлементов в почве является причиной снижения скорости и согласованности протекания процессов, ответственных за развитие организма. В конечном итоге растения не полностью реализуют свой потенциал и формируют низкий и не всегда качественный урожай, а иногда и погибают.

Основная роль микроэлементов в повышении качества и количества урожая заключается в следующем:

1. При наличии необходимого количества микроэлементов растения имеют возможность синтезировать полный спектр ферментов, позволяющих более интенсивно использовать энергию, воду и питание (N, P, K), и, соответственно, получить более высокий урожай.

2. Микроэлементы и ферменты на их основе усиливают восстановительную активность тканей и препятствуют заболеванию растений.

4. Большинство микроэлементов являются активными катализаторами, ускоряющими целый ряд биохимических реакций. Совместное влияние микроэлементов значительно усиливает их каталитические свойства. В ряде случаев только композиции микроэлементов могут восстановить нормальное развитие растений.

Микроэлементы оказывают большое влияние на биоколлоиды и влияют на направленность биохимических процессов.

По результатам исследований эффективности применения микроэлементов в сельском хозяйстве можно сделать однозначные выводы:

1. Недостаток в почве усваиваемых форм микроэлементов ведет к снижению урожайности сельскохозяйственных культур и ухудшению качества продукции. Является причиной различных заболеваний (сердцевинная гниль и дуплистость свеклы, пробковая пятнистость яблок, пустозернистость злаков, розеточная болезнь плодовых и различные хлорозные заболевания).

2. Оптимальным является одновременное поступление макро- и микроэлементов, особенно это касается фосфора и цинка, нитратного азота и молибдена.

3. В течение всего вегетационного периода растения испытывают потребность в основных микроэлементах, часть из которых не реутилизируются, т.е. не используются повторно в растениях.

4. Микроэлементы в биологически активной форме в настоящее время не имеют себе равных при внекорневых подкормках, особенно эффективных при одновременном использовании с макроэлементами.

5. Профилактические дозы биологически активных микроэлементов, вносимые независимо от состава почвы, не влияют на общее содержание микроэлементов в почве, но оказывают благоприятное воздействие на состояние растений. При их использовании исключается состояние физиологической депрессии у растений, что приводит к повышению их устойчивости к различным заболеваниям, что в целом скажется на повышении количества и качестве урожая.

6. Особенно необходимо отметить положительное влияние микроэлементов на продуктивность, рост и развитие растений, обмен веществ при условии их внесения и в строго определенных нормах, и в оптимальные сроки.

Сельскохозяйственные культуры отличаются различной потребностью в отдельных микроэлементах. Сельскохозяйственные растения по потребности в микроэлементах объединяются в следующие группы (по Церлингу В.В.):

1. Растения невысокого выноса микроэлементов и сравнительно высокой усваивающей способности - зерновые злаки, кукуруза, зернобобовые, картофель;

2. Растения повышенного выноса микроэлементов с невысокой и средней усваивающей способностью - корнеплоды (сахарная, кормовая, столовая свекла и морковь), овощи, многолетние травы (бобовые и злаковые), подсолнечник;

3. Растения высокого выноса микроэлементов - сельскохозяйственные культуры, выращиваемые в условиях орошения на фоне высоких доз минеральных удобрений.

Современные комплексные микроудобрения содержат в своем составе помимо ряда микроэлементов некоторые мезо- и макроэлементы. Рассмотрим влияние отдельных макро- и мезо- и микроэлементов на сельскохозяйственные растения.

Мезоэлеметы

Магний

Магний входит в состав хлорофилла, фитина, пектиновых веществ; содержится в растениях и в минеральной форме. В хлорофилле содержится от 15-30 % всего магния, усваиваемого растениями. Магний играет важную физиологическую роль в процессе фотосинтеза, влияет на окислительно-восстановительные процессы в растениях.

При недостатке магния увеличивается активность пероксидазы, усиливаются процессы окисления в растениях, а содержание аскорбиновой кислоты и инвертного сахара снижается. Недостаток магния тормозит синтез азотсодержащих соединений, особенно хлорофилла. Внешним признаком его недостаточности является хлороз листьев. У хлебных злаков мраморность и полосчатость листьев, у двудольных растений желтеют участки листа между жилками. Признаки магниевого голодания проявляются, в основном на старых листьях.

Недостаток магния проявляется, в большей степени на дерново-подзолистых кислых почвах легкого гранулометрического состава.

Аммиачные формы азотных, а также калийные удобрений ухудшают поглощение магния растениями, а нитратные напротив - улучшают.

Сера

Сера входит в состав всех белков, содержится в аминокислотах, играет важную роль в окислительно-восстановительных процессах протекающих в растениях, в активировании энзимов, в белковом обмене. Она способствует фиксации азота из атмосферы, усиливая образование клубеньков бобовых растений. Источником питания растений серой являются соли серной кислоты.

При недостатке серы задерживается синтез белков, так как затрудняется синтез аминокислот, содержащих этот элемент. В связи с этим проявления признаков недостаточности серы сходно с признаками азотного голодания. Развитие растений замедляется, уменьшается размер листьев, удлинняются стебли, листья и черешки становятся деревянистыми. При серном голодании листья не отмирают, хотя окраска становится бледной.

Во многих случаях при внесении серосодержащих удобрений отмечаются прибавки урожайности зерновых культур.

Макроэлементы

Калий

Калий воздействует на физико-химические свойства биоколлоидов (способствует их набуханию), находящихся в протоплазме и стенках растительных клеток, тем самым увеличивает гидрофильность коллоидов - растение лучше удерживает воду и легче переносит кратковременные засухи. Калий увеличивает весь ход обмена веществ, повышает жизнедеятельность растения, улучшает поступление воды в клетки, повышает осмотическое давление и тургор, понижает процессы испарения. Калий участвует в углеводном и белковом обмене. Под его влиянием усиливается образование сахаров в листьях и передвижение его в другие части растения.

При недостатки калия задерживается синтез белка и накапливается небелковый азот. Калий стимулирует процесс фотосинтеза, усиливает отток углеводов из пластинки листа в другие органы.

Азот

Азот входит в состав таких важных органических веществ, как белки, нуклеиновые кислоты, нуклеопротеиды, хлорофилл, алкалоиды, фосфаты и др.

Нуклеиновые кислоты играют важнейшую роль в обмене веществ в растительных организмах. Азот является важнейшей составной частью хлорофилла, без которого не может протекать процесс фотосинтеза; входит в состав ферментов - катализаторов жизненных процессов в растительном организме.

В препаратах ГЛИЦЕРОЛ азот находится в нитратной форме. Нитраты - лучшая форма питания растений в молодом возрасте, когда листовая поверхность небольшая, вследствие чего в растениях еще слабо происходит процесс фотосинтеза и не образуются в достаточном количестве углеводы и органические кислоты.

Микроэлементы

Железо

Особенности строения атома железа, типичные для переходных элементов, определяют переменную валентность этого металла (Fe 2+ /Fe 3+) и ярко выраженную способность к комплексообразованию. Эти химические свойства и определяют основные функции железа в растениях.

В окислительно-восстановительных реакциях железо участвует как в гемовых, таки в негемовых формах.

Железо в составе органических соединений необходимо для окислительно-восстановительных процессов, происходящих при дыхании и фотосинтезе. Это объясняется очень высокой степенью каталитических свойств этих соединений. Неорганические соединения железа также способны катализировать многие биохимические реакции, а в соединении с органическими веществами каталитические свойства железа возрастают во много раз.

Атом железа окисляется и восстанавливается сравнительно легко, по-этому соединения железа являются переносчиками электронов в биохимических процессах. Процессы эти осуществляются ферментами, содержащими железо. Железу также принадлежит особая функция - непременное участие в биосинтезе хлорофилла. Поэтому любая причина, ограничивающая доступность железа для растений, приводит к тяжелым заболеваниям, в частности к хлорозу.

При недостатке железа листья растений становятся светло-желтыми, а при голодании - совсем белыми (хлоротичными). Чаще всего хлороз, как заболевание, характерен для молодых листьев. При остром недостатке железа наступает гибель растений. У деревьев и кустарников зеленая окраска верхушечных листьев исчезает полностью, они становятся почти белыми и постепенно усыхают. Недостаток железа для растений чаще всего отмечается на карбонатных, а также на плохо дренированных почвах.

В большинстве случаев микроэлементы в растении не реутилизируются при недостатке какого-либо из них. Установлено, что на засоленных почвах применение микроэлементов усиливает поглощение растениями питательных веществ из почвы, снижает поглощение хлора, при этом повышается накопление сахаров и аскорбиновой кислоты, наблюдается некоторое увеличение содержания хлорофилла и повышается продуктивность фотосинтеза.

Недостаток железа чаще всего проявляется на карбонатных почвах, а также на почвах с высоким содержанием усваиваемых фосфатов, что объясняется переводом железа в малодоступные соединения.

Дерново-подзолистые почвы отличаются избыточным количеством железа.

Бор

Бор необходим для развития меристемы. Характерными признаками недостатка бора являются отмирание точек роста, побегов и корней, нарушения в образовании и развитии репродуктивных органов, разрушение сосудистой ткани и т. д. Недостаток бора очень часто вызывает разрушение молодых растущих тканей.

Под влиянием бора улучшаются синтез и передвижение углеводов, особенно сахарозы, из листьев к органам плодоношения и корням. Известно, что однодольные растения менее требовательны к бору, чем двудольные.

В литературе имеются данные о том, что бор улучшает передвижение ростовых веществ и аскорбиновой кислоты из листьев к органам плодоношения. Он способствует и лучшему использованию кальция в процессах обмена веществ в растениях. Поэтому при недостатке бора растения не могут нормально использовать кальций, хотя последний находится в почве в достаточном количестве. Установлено, что размеры поглощения и накопления бора растениями возрастают при повышении содержания калия в почве.

Недостаток бора ведет не только к понижению урожая сельскохозяйственных культур, но и к ухудшению его качества. Известно, что многие функциональные заболевания культурных растений обусловлены недостаточным количеством бора. Например, на известкованных дерново-подзолистых и дерново-глеевых почвах наблюдается заболевание льна бактериозом. У свеклы появляются хлороз сердцевинных листьев, загнивание корня (сухая гниль).

Следует отметить, что бор необходим растениям в течение всего вегетационного периода. Исключение бора из питательной среды в любой фазе роста растения приводит к его заболеванию.

Многими исследованиями установлено, что цветки наиболее богаты бором по сравнению с другими частями растений. Он играет существенную роль в процессах оплодотворения. При исключении его из питательной среды пыльца растений плохо или даже совсем не прорастает. В этих случаях внесение бора способствует лучшему прорастанию пыльцы, устраняет опадение завязей и усиливает развитие репродуктивных органов.

Бор играет важную роль в делении клеток и синтезе белков и является необходимым компонентом клеточной оболочки. Исключительно важную функцию выполняет бор в углеводном обмене. Недостаток его в питательной среде вызывает накопление сахаров в листьях растений. Это явление наблюдается у наиболее отзывчивых к борным удобрениям культур.

При недостатке бора в питательной среде наблюдается также нарушение анатомического строения растений, например слабое развитие ксилемы, раздробленность флоэмы основной паренхимы и дегенерация камбия. Корневая система развивается слабо, так как бор играет значительную роль в ее развитии. Особенно сильно нуждается в боре сахарная свекла.

Важное значение бор имеет также для развития клубеньков на корнях бобовых растений. При недостаточности или отсутствии бора в питательной среде клубеньки развиваются слабо или совсем не развиваются.

Медь

Роль меди в жизни растений весьма специфична: медь не может быть заменена каким-либо другим элементом или их суммой.

Признак недостатка меди в растениях проявляется в виде «болезни обработки». У злаковых симптомы проявляются в виде
побеления и подсыхания верхушек молодых листьев. Все растение приобретает светло-зеленую окраску, колошение задерживается. При сильном медном голодании высыхают стебли. Такие растения совсем не дают урожая, или урожай бывает очень низкий и плохого качества. Иногда при сильном медном голодании растения обильно кустятся и часто продолжают образовывать новые побеги после полного засыхания верхушек. Сильное и растянутое кущение ячменя при медном голодании благоприятствует его повреждению шведской мухой.

Различные сельскохозяйственные культуры обладают неодинаковой чувствительностью к недостатку меди. Растения можно расположить в следующем порядке по убывающей отзывчивости на медь: пшеница, ячмень, овес, кукуруза, морковь, свекла, лук, шпинат, люцерна и белокочанная капуста. Средней отзывчивостью отличаются картофель, томат, клевер красный, фасоль, соя. Сортовые особенности растений в пределах одного и того же вида имеют большое значение и существенно влияют на степень проявления симптомов медной недостаточности.

Недостаток меди часто совпадает с недостатком цинка, а на песчаных почвах также с недостатком магния. Внесение высоких доз азотных удобрений усиливает потребность растений в меди и способствует обострению симптомов медной недостаточности. Это указывает на то, что медь играет важную роль в азотном обмене.

Медь участвует в углеводном и белковом обменах растений. Под влиянием меди повышается как активность пероксидазы, так и синтез белков, углеводов и жиров. Недостаток меди вызывает у растений понижение активности синтетических процессов и ведет к накоплению растворимых углеводов, аминокислот и других продуктов распада сложных органических веществ.

При питании нитратами недостаток меди тормозит образование ранних продуктов их восстановления и вначале не сказывается на обогащении азотом аминокислот, амидов, белков, пептонов и полипептидов. В дальнейшем же наблюдается сильное торможение обогащения 15 N всех фракций органического азота, причем оно особенно значительно в амидах. При питании аммиачным азотом недостаток меди задерживает включение тяжелого азота в белок, пептоны и пептиды уже в первые часы после внесения азотной подкормки. Это указывает на особо важную роль меди при применении аммиачного азота.

У кукурузы медь увеличивает содержание растворимых Сахаров, аскорбиновой кислоты и в большинстве случаев — хлорофилла, усиливая активность медьсодержащего фермента полифенолоксидазы и снижая активность пероксидазы в листьях кукурузы. Она повышает также содержание белкового азота в листьях созревающей кукурузы.

Медь играет большую роль в процессах фотосинтеза. При ее недостатке разрушение хлорофилла происходит значительно быстрее, чем при нормальном уровне питания растений медью.

Таким образом, медь влияет на образование хлорофилла и препятствует его разрушению.

В общем следует сказать, что физиологическая и биохимическая роль меди многообразна. Медь влияет не только на углеводный и белковый обмены растений, но и повышает интенсивность дыхания. Особенно важно участие меди в окислительно-восстановительных реакциях. В клетках растений эти реакции протекают при участии ферментов, в состав которых входит медь. Поэтому медь является составной частью ряда важнейших окислительных ферментов — полифенолоксидазы, аскорбинатоксидазы, лактазы, дегидрогеназы и др. Все указанные ферменты осуществляют реакции окисления переносом электронов с субстрата к молекулярному кислороду, который является акцептором электронов. В связи с этой функцией валентность меди в окислительно-восстановительных реакциях изменяется (от двухвалентного к одновалентному состоянию и обратно).

Характерной особенностью действия меди является то, что этот микроэлемент повышает устойчивость растений против грибных и бактериальных заболеваний. Медь снижает заболевание зерновых культур различными видами головни, повышает устойчивость томатов к бурой пятнистости.

Цинк

Все культурные растения по отношению к цинку делятся на 3 группы: очень чувствительные, средне чувствительные и нечувствительные. К группе очень чувствительных культур относятся кукуруза, лен, хмель, виноград, плодовые; средне чувствительными являются соя, фасоль, кормовые бобовые, горох, сахарная свекла, подсолнечник, клевер, лук, картофель, капуста, огурцы, ягодники; слабо чувствительными — овес, пшеница, ячмень, рожь, морковь, рис, люцерна.

Недостаток цинка для растений чаще всего наблюдается на песчаных и карбонатных почвах. Мало доступного цинка на торфяниках, а также на некоторых малоплодородных почвах.

Недостаток цинка обычно вызывает задержку роста растений и уменьшение количества хлорофилла в листьях. Признаки цинковой недостаточности чаще всего встречаются у кукурузы.

Недостаток цинка сильнее сказывается на образовании семян, чем на развитии вегетативных органов. Симптомы цинковой недостаточности широко встречаются у различных плодовых культур (яблоня, черешня, абрикос, лимон, виноград). Особенно сильно страдают от недостатка цинка цитрусовые культуры.

Физиологическая роль цинка в растениях очень разнообразна. Он оказывает большое влияние на окислительно-восстановительные процессы, скорость которых при его недостатке заметно снижается. Дефицит цинка ведет к нарушению процессов превращения углеводов. Установлено, что при недостатке цинка в листьях и корнях томата, цитрусовых и других культур накапливаются фенольные соединения, фитостеролы или лецитины. Некоторые авторы рассматривают эти соединения как продукты неполного окисления углеводов и белков и видят в этом нарушение окислительно-восстановительных процессов в клетке. При недостатке цинка в растениях томата и цитрусовых накапливаются редуцирующие сахара и уменьшается содержание крахмала. Имеется указание, что недостаток цинка сильнее проявляется у растений, богатых углеводами.

Цинк участвует в активации ряда ферментов, связанных с процессом дыхания. Первым ферментом, в котором был открыт цинк, является карбоангидраза. Карбоангидраза содержит 0,33—0,34 % цинка. Она определяет различную интенсивность процессов дыхания и выделения СО 2 животными организмами. Активность карбоангидразы в растениях значительно слабее, чем в организме животных.

Цинк входит также в состав других ферментов — триозофосфатдегидрогеназы, пероксидазы, каталазы, оксидазы, полифенолоксидазы и др.

Обнаружено, что большие дозы фосфора и азота усиливают признаки недостаточности цинка у растений. В опытах со льном и
другими культурами установлено, что цинковые удобрения особенно необходимы при внесении высоких доз фосфора.

Многими исследователями доказана связь между обеспеченностью растений цинком и образованием и содержанием в них ауксинов. Цинковое голодание вызывается отсутствием активного ауксина в стеблях растений и пониженной его деятельностью в листьях.

Значение цинка для роста растений тесно связано с его участием в азотном обмене

Значение цинка для роста растений тесно связано с его участием в азотном обмене. Дефицит цинка приводит к зничительному накоплению растворимых азотных соединений — амидов и аминокислот, что нарушает синтез белка. Многие исследования подтвердили, что содержание белка в растениях при недостатке цинка уменьшается.

Под влиянием цинка повышаются синтез сахарозы, крахмала, общее содержание углеводов и белковых веществ. Применение цинковых удобрений увеличивает содержание аскорбиновой кислоты, сухого вещества и хлорофилла в листьях кукурузы. Цинковые удобрения повышают засухо-, жаро- и холодоустойчивость растений.

Марганец

Марганцевая недостаточность у растений обостряется при низкой температуре и высокой влажности. Видимо, в связи с этим озимые хлеба наиболее чувствительны к его недостатку ранней весной. При недостатке марганца в растениях накапливается избыток железа, который и вызывает хлороз. Избыток марганца задерживает поступление железа в растение, следствием чего также является хлороз, но уже от недостатка железа. Накопление марганца в токсических для растений концентрациях наблюдается на кислых дерново-подзолистых почвах. Токсичность марганца устраняет молибден.

Согласно многочисленным исследованиям выявлено наличие антагонизма между марганцем и кальцием, марганцем и кобальтом; между марганцем и калием антагонизм отсутствует.

На песчаных почвах нитраты и сульфаты уменьшают подвижность марганца, а сульфаты и хлориды заметного влияния не
оказывают. При известковании почв марганец переходит в малодоступные для растений формы. Поэтому путем известкования можно устранить токсическое действие этого элемента на некоторых подзолистых (кислых) почвах нечерноземной полосы.

Доля марганца в первичных продуктах фотосинтеза составляет 0,01—0,03%. Повышение под влиянием марганца интенсивности фотосинтеза в свою очередь оказывает действие на другие процессы жизнедеятельности растений: увеличивается содержание в растениях сахаров и хлорофилла и повышается интенсивность дыхания, а также плодоношения растений.

Роль марганца в обмене веществ у растений сходна с функциями магния и железа. Марганец активирует многочисленные ферменты, особенно при фосфорилировании. Благодаря способности переносить электроны путем изменения валентности он участвует в различных окислительно-восстановительных реакциях. В световой реакции фотосинтеза он участвует в расщеплении молекулы воды.

Поскольку марганец активизирует ферменты в растении, его недостаток сказывается на многих процессах обмена веществ, в частности на синтезе углеводов и протеинов.

Признаки дефицита марганца у растений чаще всего наблюдаются на карбонатных, сильноизвесткованных, а также на некоторых торфянистых и других почвах при рН выше 6,5.

Недостаток марганца становится заметным сначала на молодых листьях по более светлой зеленой окраске или обесцвечиванию (хлорозу). В отличие от железистого хлороза у однодольных в нижней части пластинки листьев появляются серые, серо-зеленые или бурые, постепенно сливающиеся пятна, часто с более темным окаймлением. Признаки марганцевого голодания у двудольных такие же, как при недостатке железа, только зеленые жилки обычно не так резко выделяются на пожелтевших тканях. Кроме того, очень скоро появляются бурые некротические пятна. Листья отмирают даже быстрее, чем при недостатке железа.

Марганец участвует не только в фотосинтезе, но и в синтезе витамина С. При недостатке марганца понижается синтез органических веществ, уменьшается содержание хлорофилла в растениях, и они заболевают хлорозом. Внешние симптомы марганцевого голодания: серая пятнистость листьев у злаков; хлороз у сахарной свеклы, зернобобовых, табака и хлопчатника; у плодово-ягодных насаждений недостаток марганца вызывает пожелтение краев листьев, усыхание молодых веток.

Марганцевая недостаточность у растений обостряется при низкой температуре и высокой влажности. В связи с этим озимые хлеба наиболее чувствительны к его недостатку ранней весной. При недостатке марганца в растениях накапливается избыток железа, который и вызывает хлороз. Избыток марганца задерживает поступление железа в растение, следствием чего также является хлороз, но уже от недостатка железа. Накопление марганца в токсических для растений концентрациях наблюдается на кислых дерново-подзолистых почвах. Токсичность марганца устраняет молибден.

На песчаных почвах нитраты и сульфаты уменьшают подвижность марганца, а сульфаты и хлориды заметного влияния не оказывают. При известковании почв марганец переходит в малодоступные для растений формы. Поэтому путем известкования можно устранить токсическое действие этого элемента на некоторых подзолистых (кислых) почвах нечерноземной полосы.

Повышение под влиянием марганца интенсивности фотосинтеза в свою очередь оказывает действие на другие процессы жизнедеятельности растений: увеличивается содержание в растениях сахаров и хлорофилла и повышается интенсивность дыхания, а также плодоношения растений.

Кремний

Для большинства высших растений кремний (Si) — полезный химический элемент. Он способствует повышению механической прочности листьев и устойчивости растений к грибковым заболеваниям. В присутствии кремния растения лучше переносят неблагоприятные условия: дефицит влаги, несбалансированность питательных элементов, токсичность тяжелых металлов, засоление почв, действие экстремальных температур.

По даным исследователей, применение кремния повышает устойчивость растений к дефициту влаги. Кремний растения могут поглощать через листья при листовых подкормках микроудобрениями. В растениях кремний откладывается приемущественно в эпидермиальных клетках, образуя двойной кутикулярно-кремниевый слой (прежде всего на листьях и корнях), а также клетках ксилемы. Его избыток трансформируется в различные виды фитолитов.

Утолщение стенок эпидермиальных клеток вследствие аккумуляции в них кремниевой кислоты и образования кремнецеллюлозной мембраны способствует более экономичному расходованию влаги. При полимеризации поглощенных растением монокремниевых кислот происходит выделение воды, которую используют растения. С другой стороны положительное вличние кремния на развитие корневой системы, увеличение ее биомассы способствует улучшению поглощения растением воды. Это способствует обеспеченности тканей растений водой в условиях водного дефицита, что в свою очередь, влияет на физиолого-биохимические процессы, протекающие в них.

Направленность и интенсивность этих процессов в значительной степени определяется балансом эндогенных фитогормонов, являющихся одним из ведущих факторов регуляции роста и развития растений.

Многие эффекты, вызываемые кремнием, объясняют его модифицирующим влиянием на сорбционные свойства клеток (клеточных стенок), где он может накапливаться в форме аморфного кремнезема и связываться различными органическими соединениями: липидами, белками, углеводами, органическими кислотами, лигнином, полисахаридами. Зафиксировано увеличение в присутствии кремния сорбции клеточными стенками марганца и, как следствие, устойчивости растений к его избытку в среде. Подобный же механизм лежит в основе положительного влияния на растения кремния в условиях избытка ионов алюминия, устраняемого путем формирования Al-Si-комплексов. В форме силикатов возможна иммобилизация избытка ионов цинка в цитоплазме растительной клетки, что установлено на примере устойчивого к повышенным концентрациям цинка. В присутствии кремния ослабляется негативное воздействие на растения кадмия вследствие ограничения транспорта последнего в побеги. В условиях засоленных почв кремний способен препятствовать накоплению в побегах натрия.

Очевидно, при избыточном содержании в среде многих химических элементов кремний полезен для растений. Его соединения
способны адсорбировать ионы токсичных элементов, ограничивая их мобильность как в среде обитания, так и в тканях растений. Действие кремния на растения при недостатке химических элементов, особенно необходимых в небольшом количестве, например, микроэлементов, до сих пор не исследовано.

В проведенных исследованиях установлено, что влияние кремния на концентрацию в листьях пигментов (хлорофиллов а, b каротиноидов) проявляется при недостатке железа и двойственно по своей направленности. Выявлены факты торможения в присутствии кремния развития хлороза, что отмечается исключительно у молодых двудольных растений.

Согласно результатам исследований клетки Si-обработанных растений способны связывать железо с прочностью, достаточной для ограничения его перемещения по растению.

Соединения кремния увеличивают хозяйственно-ценную часть урожая при тенденции к уменьшению биомассы соломы. В начале вегетации, в фазе кущения, влияние кремния на рост вегетативной массы является существенным и составляет, в среднем 14-26 %.

Обрабтка семян соединениями кремния оказывает большое влияние на содержание в зерне фосфора, повышет массу 1000 зерен.

Натрий

Натрий относится к потенциалобразующим элементам, необходимым для поддержания специфических электрохимических потенциалов и осмотических функций клетки. Ион натрия обеспечивает оптимальную конформацию белков-ферментов (активация ферментов), образует мостиковые связи, балансировочные анионы, контролирует проницаемость мембран и электропотенциалы.

Неспецифические функции натрия, связанны с регуляцией осмотического потенциала.

Недостаток натрия появляются только у натриелюбивых растений, например у сахарной свеклы, мангольда и турнепса. Недостаток натрия у этих растений приводит к хлорозу и некрозам, листья растений становятся темно-зелеными и тусклыми, быстро увядают при засухе и растут в горизонтальном направлении, краях листьев могут появиться бурые пятна в виде ожогов.

Узнайте первым о предстоящих акциях и скидках. Мы не рассылаем спам и не передаем email третьим лицам.

Значение макро- и микроэлементов в жизни растений

В зеленых насаждениях обнаружены многие химические элементы. Макроэлементы содержатся в значительных концентрациях, микроэлементы – в тысячных долях процента.

Макроэлементы и их значение для растений

Макроэлементы представляют особую важность для роста и развития растений на всех стадиях жизненного цикла. К ним относят те, которые содержатся в культурах в значительных количествах - это азот, фосфор, калий, сера, магний и железо. При их дефиците представители флоры плохо развиваются, что сказывается на урожайности. Признаки нехватки многократно используемых макроэлементов проявляются прежде всего на старых листьях.

Азот


Главный ответственный за питание корней элемент. Он участвует в реакциях фотосинтеза, регулирует обмен веществ в клетках, а также способствует росту новых побегов. Этот элемент особенно необходим для растений на стадии вегетации. При нехватке азота рост насаждений замедляется или останавливается вовсе, цвет листьев и стеблей становится бледнее. Из-за переизбытка азота позднее развиваются соцветия и плоды. Насаждения, которых перекормили азотом имеют ботву темно-зеленого цвета, и излишне толстые стебли. Период вегетации удлиняется. Слишком сильное перенасыщение азотом приводит к гибели флоры в течение нескольких дней.

Фосфор


Участвует в большинстве протекающих в растениях процессах. Обеспечивает нормальное развитие и функционирование корневой системы, образование крупных соцветий, способствует вызреванию плодов.

Нехватка фосфора негативно сказывается на цветении и процессе созревания. Цветки получаются мелкими, плоды часто с дефектами. Литья могут окрашиваться в красновато-коричневый оттенок. Если же фосфор в избытке, замедляется обмен веществ в клетках, растения становятся чувствительными к нехватке воды, они хуже усваивают такие питательные элементы, как железо, цинк и калий. В результате листья желтеют, опадают, срок жизни растения сокращается.

Калий


Процент калия в растениях больше по сравнению с кальцием и магнием. Этот элемент задействован в синтезировании крахмала, жиров, белков и сахарозы. Он защищает от обезвоживания, укрепляет ткани, предупреждает преждевременное увядания цветков, повышает сопротивляемость культур к различного рода патогенам.

Растения, обедненные калием, можно узнать по отмершим краям листьев, коричневым пятнам и куполообразной их форме. Это происходит вследствие нарушения процессов производства, накопления в зеленых частях насаждений продуктов распада, аминокислот и глюкозы. Если калий в избытке, наблюдается замедление всасывания растением азота. Это приводит к остановке роста, деформациям листьев, хлорозу, а на запущенных стадиях к отмиранию листьев. Поступление магния и кальция также затрудняется.

Магний

Участвует в реакциях с образованием хлорофилла. Является одним из его составных элементов. Способствует синтезу фитинов, содержащихся в семенах и пектинов. Магний активизирует работу энзимов, при участии которых происходит образование углеводов, протеинов, жиров, органических кислот. Он участвует в транспорте питательных веществ, способствует более скорому вызреванию плодов, улучшению их качественных и количественных характеристик, повышению качества семян.

Если растения испытывают дефицит магния , их листья желтеют, так как молекулы хлорофилла разрушаются. Если недостаток магния своевременно не восполнить, растение начнет отмирать. Избыток магния у растений наблюдаются редко. Однако, если доза внесенных препаратов магния слишком большая, замедляется всасываемость кальция и калия.

Сера

Является составным элементов протеинов, витаминов, аминокислот цистина и метионина. Участвует в процессах образования хлорофилла. Растения, которые испытывают серное голодание, нередко заболевают хлорозом. Болезнь поражает главным образом молодые листья. Избыток серы приводит к пожелтению краев листьев, их подворачиванию вовнутрь. Впоследствии края обретают коричневый оттенок и отмирают. В некоторых случаях возможно окрашивание листьев в сиреневый оттенок.

Железо

Является составным компонентом хлоропластов, участвует в производстве хлорофилла, обмене азота и серы, клеточном дыхании. Железо – необходимый компонент многих растительных ферментов. Этот тяжелый металл играет наиболее важную роль. Его содержание в растении достигает сотых долей процента. Неорганические соединения железа ускоряют биохимические реакции.

При дефиците этого элемента растения нередко заболевают хлорозом. Нарушаются дыхательные функции, ослабляются реакции фотосинтеза. Верхушечные листья постепенно бледнеют и усыхают.

Микроэлементы

Основными микроэлементами являются: железо, марганец, бор, натрий, цинк, медь, молибден, хлор, никель, кремний. Их роль в жизни растений нельзя недооценивать. Недостаток микроэлементов хоть и не приводит к гибели растений, но сказывается на скорости протекания различных процессов. Это влияет на качество бутонов, плодов и урожаях в целом.

Кальций

Регулирует усвоение белков и углеводов, влияет на продуцирование хлоропластов и усвоению азота. Он играет важную роль в построении сильных клеточных оболочек. Наибольшее содержание кальция наблюдается в зрелых частях растений. Старые листья состоят из кальция на 1 %. Кальций активирует работу многих энзимов, в том числе амилазы, фосфорилазы, дегидрогеназы и др. Он регулирует работу сигнальных систем растений, отвечая за нормальные реакции на воздействия гормонами и внешними раздражителями.

При нехватке этого химического элемента происходит ослизнение клеток растений. Особенно это проявляется на корнях. Нехватка кальцием приводит к нарушению транспортной функции мембран клеток, повреждению хромосом, нарушению цикла деления клеток. Перенасыщение кальцием провоцирует хлороз. На листьях появляются бледные пятна с признаками некроза. В некоторых случаях можно наблюдать круги, заполненные водой. Отдельные растения реагируют на переизбыток данного элемента ускоренным ростом, но появившиеся побеги быстро отмирают. Признаки отравления кальцием схожи с переизбытком железа и магния.

Марганец

Активизирует работу ферментов, участвует в синтезировании протеинов, углеводов, витаминов. Марганец также принимает участие в фотосинтезе, дыхании, углеводно-белковом обмене. Недостаток марганца приводит к высветлению окраски листьев, появлению отмерших участков. Растения заболеванию хлорозом, у них отмечается недоразвитие корневой системы. В серьезных случаях начинают засыхать и опадать листья, отмирать верхушки веток.

Цинк

Регулирует окислительно-восстановительные процессы. Является компонентом некоторых важных ферментов. Цинк повышает выработку сахарозы и крахмала, содержание в плодах углеводов и белков. Он участвует в реакции фотосинтеза и способствует выработке витаминов. При нехватке цинка растения хуже противостоят холоду и засухе, уменьшается содержание в них белка. Цинковое голодание также приводит к изменению окраски листьев (они желтеют или обретают белесый цвет), уменьшению образования почек, падению урожайности.

Молибден

На сегодняшний день именно этот микроэлемент называют одним из важнейших. Молибден регулирует азотный обмен, нейтрализует нитраты. Он также влияет на углеводородный и фосфорный обмен, производство витаминов и хлорофилла, а также на скорость протекания окислительно-восстановительных процессов. Молибден способствует обогащению растений витамином С, углеводами, каротином, белками.

Недостаточные концентрации молибдена негативно сказываются на обменных процессах, затормаживается редуцирование нитратов, образование белков и аминокислот. В связи с этим урожаи снижаются, их качество ухудшается.

Медь

Является элементом медьсодержащих белков, энзимов, участвует в фотосинтезе, регулирует транспорт белков. Медь повышает содержание азота и фосфора в два раза, а также защищает хлорофилл от разрушения.

Дефицит меди приводит к скручиванию кончиков листьев и хлорозу. Снижается количество пыльцевых зерен, падает урожайность, у деревьев “повисает” крона.

Бор

Регулирует обмен протеинов и углеводов. Является важнейшим компонентом синтеза РНК и ДНК. Бор в союзе с марганцем являются катализаторами реакции фотосинтеза в растениях, которые испытали на себе заморозки. Бор требуется насаждениям на всех стадиях жизненного цикла.

От дефицита бора страдают больше всего молодые листья. Нехватка этого микроэлемента приводит к замедленному развитию пыльцы, внутреннему некрозу стеблей.

Избыток бора тоже нежелателен, так как приводит к ожогам нижних листьев.

Никель

Представляет собой составной компонент уреазы, с его участием протекают реакции разложения мочевины. В насаждениях, которые обеспечены никелем в достаточном количестве, содержание мочевины ниже. Также никель активирует некоторые ферменты, участвует в транспорте азота, стабилизирует структуру рибосом. При недостаточном поступлении никеля замедляется рост растений, снижается объем биомассы. А при перенасыщении никелем угнетаются реакции фотосинтеза, появляются признаки хлороза.

Хлор

Является основным элементов водно-солевого обмена растений. Участвует в поглощении кислорода корневой системой, реакциях фотосинтеза, энергетическом обмене. Хлор уменьшает последствия заболевания грибком, борется с излишним поглощением нитратов.

При недостатке хлора корни вырастают короткими, но при этом густо разветвленными, а листья увядают. Капуста, испытавшая дефицит хлора, получается неароматной.

При этом и переизбыток хлора вреден. При нем листья становятся мельче и твердеют, на некоторых появляются пурпурные пятна. Стебель также грубеет. Чаще всего дефицит Cl проявляется наряду с недостатком N. Исправить ситуацию позволяет аммиачная селитра и каинит.

Кремний

Является своеобразным кирпичиком стенок клеток, а потому повышает выносливость насаждений перед заболеваниями, заморозками, загрязнениями, нехваткой воды. Микроэлемент влияет на обменные процессы с участие фосфора и азота, помогает снижать токсичность тяжелых металлов. Кремний стимулирует развитие корней, влияет на рост и развитие растений, способствует урожайности, повышает содержание сахара и витаминов в плодах. Визуально дефицит кремния не обнаружить, но его недостаток негативно скажется на сопротивляемости культур негативным факторам, развитости корневой системы, развитии цветов и плодов.


Микро- и макроэлементы оказывают влияние друг на друга, в результате их биодоступность для флоры меняется. Переизбыток фосфора приводит к нехватке цинка и образованию фосфатов меди и железа – то есть недоступности этих металлов для растений. Переизбыток серы уменьшает усвояемость молибдена. Излишек марганца приводит к хлорозу, вызванного недостатком железа. Высокие концентрации меди приводят к нехватке железа. При дефиците B нарушается всасываемость кальция. И это только часть примеров!

Вот почему так важно для восполнения дефицита макро- и микроэлементов, использовать сбалансированные комплексы удобрений. Для различных сред существуют свои составы. Нельзя применять удобрение для почвы в гидропонике, ведь изначальные условия будут неодинаковы.

Почва – своеобразный буфер. В ней питательные вещества могут находиться до тех пор, пока не понадобятся растению. Почва сама регулирует уровень pH, тогда как в гидропонных системах показатели полностью зависят от человека и тех препаратов, которыми он насыщает питательный раствор.

При традиционном выращивании нельзя точно знать, сколько тех или иных микроэлементов содержится в земле, тогда как в гидропонике показатели pH и ЕС питательного раствора можно определить без труда – с помощью рН-метра и ЕС-метра. Выращивание в гидропонике более эффективно. Вместе с тем любой сбой здесь имеет более серьезные последствия для насаждений. Вот почему нужно выбирать удобрения внимательно.

Оптимальный комплекс макро- и микроэлементов, необходимых для питания растения, выращиваемого в земле, содержит комплект удобрений Bio-Grow + Bio-Bloom. Препарат ускоряет рост цветов и культур, увеличивает урожайность.

Для растений, выращиваемых методом гидропоники рекомендуем выбрать комплект удобрений Flora Duo Grow HW + Flora Duo Bloom производства Франция. Он имеет сбалансированный состав, который закрывает все потребности растений на протяжении всего жизненного цикла. Flora Duo Grow способствует ускоренному росту листьев и формированию сильных стеблей. Flora Duo Bloom содержит фосфор, который готовит насаждения к цветению и плодоношению.

В составе растений обнаружены почти все элементы периодической системы Д.И. Менделеева, но роль многих из них еще недостаточно изучена.

В наибольшем количестве растения поглощают азот, фосфор, калий, кальций, магний, серу. Эти элементы называют макроэлементами , их содержание в растениях исчисляется целыми процентами или десятыми долями.

Азот (N) входит в состав всех белков, нуклеиновых кислот, аминокислот, хлорофилла, ферментов, многих витаминов, липоидов и других органических соединений, образующихся в растениях. Недостаток азота вызывает прекращение роста и пожелтение листьев из-за нарушения образования хлорофилла.

Азот - очень подвижный элемент, при недостатке он перемещается из старых листьев в новые, более молодые. Появляются признаки азотного голодания - сначала в пожелтении самых нижних листьев, а затем, если процесс не остановить, в отмирании листьев выше.

Избыток азота ведет к неестественно быстрому росту, формированию рыхлых тканей, что делает их более подверженными различным заболеваниям. Удлиняется вегетационный период и задерживается начало цветения, у некоторых растений передозировка азотных удобрений может так сдвинуть внутренние процессы, что приведет к полному отказу от цветения. Избыток азота также задерживает усвоение растением калия.

Фосфор (Р) играет исключительно важную роль в жизни растений. Большинство процессов обмена веществ осуществляется только при его участии. Он обеспечивает здоровье корней, закладку бутонов, вызревание плодов и семян, увеличивает зимостойкость.

При недостатке фосфора задерживается цветение и созревание, образуются дефектные плоды, листья приобретают красно-коричневый оттенок. В первую очередь поражаются старые нижние листья, затем процесс распространяется выше.

Избыток фосфора замедляет обмен веществ, делает растение менее устойчивым к недостатку воды, ухудшает усвоение железа, калия и цинка, что приводит к общему пожелтению, хлорозу, появлению ярких некротических пятен, опадению листьев. Развитие растения ускоряется, оно быстро стареет.

Некоторые растения особенно негативно реагируют на внесение больших доз фосфорных удобрений. Это относится, в первую очередь, к выходцам из Австралии, где почвы бедны фосфором. Не любят подкормок фосфором хвойные растения. Особую осторожность при внесении этого элемента требуют и гибискусы, для которых не рекомендуется использовать богатые фосфором удобрения для цветущих растений.

Калий (К) играет важнейшую физиологическую роль в углеводном и белковом обмене растений, в процессах фотосинтеза и водного обмена, повышает устойчивость к увяданию и преждевременному обезвоживанию, укрепляет ткани растения и делает их более устойчивыми к болезням и вредителям.

Он легко передвигается из старых тканей растения, где был уже использован, в молодые. Недостаток калия, так же как и его избыток, отрицательно сказывается на количестве и качестве урожая. При избытке калия задерживается поступление азота в растение, наступает торможение роста, деформации и хлороз листьев, в первую очередь старых. На более поздних стадиях появляются мозаичные пятна, листья вянут и опадают. Избыток калия также ухудшает усвоение магния или кальция.

Магний (Mg) входит в состав хлорофилла и непосредственно участвует в фотосинтезе. А еще необходим для образования запасного вещества фитина, содержащегося в семенах растений, и пектиновых веществ.

Магний активизирует деятельность многих ферментов, участвующих в образовании и превращении углеводов, белков, органических кислот, жиров; влияет на передвижение и превращение фосфорных соединений, плодоношение и качество семян. Максимальное содержание магния в вегетативных органах растений отмечается в период цветения. После цветения в растении резко снижается количество хлорофилла и происходит отток магния из листьев и стеблей в семена, где образуются фитин и фосфат магния.

Недостаток магния проявляется в пожелтении листьев, хлорозе.

Кальций (Ca ) участвует в углеводном и белковом обмене растений, образовании и росте хлоропластов. Он необходим для нормального усвоения растением аммиачного азота, затрудняет восстановление в растениях нитратов до аммиака. От кальция в высокой степени зависит построение нормальных клеточных оболочек.

В отличие от азота, фосфора и калия, находящихся обычно в молодых тканях, кальций содержится в значительных количествах в старых тканях; при этом его больше в листьях и стеблях, чем в семенах.

Сера (S ) входит в состав аминокислот цистина и метионина, является составной частью белков и некоторых витаминов, влияет на образование хлорофилла. Недостаток серы ведет к хлорозу, в первую очередь молодых листьев.

Не менее важны и другие элементы питания - железо, медь, марганец, молибден, цинк, кобальт, бор и др., которые принято называть микроэлементами. Они потребляются растениями в небольших количествах, но недостаток их ведет к серьезным дефектам развития растений. Содержание микроэлементов в растении исчисляется сотыми и тысячными долями процента.

  • Железо (Fe ) входит в состав ферментов, участвующих в построении хлорофилла, хотя непосредственно в него этот элемент не входит. Железо участвует в окислительно-восстановительных процессах, протекающих в растениях, оно является составной частью дыхательных ферментов. Недостаток железа ведет к распаду ростовых веществ (ауксинов), синтезируемых растениями, при этом листья становятся бледно-желтыми. Чаще всего он наблюдается при избытке карбонатов и в сильно известкованных субстратах. Железо не может передвигаться из старых тканей в молодые.
  • Медь (Cu ) входит в состав медьсодержащих белков, ферментов, она также принимает участие в процессе фотосинтеза, углеводного и белкового обмена.
  • Марганец (Mn ) входит в состав окислительно-восстановительных ферментов и принимает участие в фотосинтезе, углеводном и азотном обмене.
  • Молибден (Mo ) играет большую роль в азотном питании. Он локализуется в молодых растущих органах и меньше - в стеблях, корнях. При недостатке молибдена задерживается развитие клубеньков на корнях бобовых растений и фиксация азота. Внесение в почву молибдена способствует усвоению азотных удобрений растениями, но высокое содержание молибдена весьма токсично для растений.
  • Цинк (Zn ) оказывает влияние на обмен энергии и веществ в растении. При недостатке цинка уменьшается содержание сахарозы и крахмала, повышается накопление органических кислот, снижается содержание ауксина, нарушается синтез белка, характерна задержка роста.
  • Кобальт (Co ) участвует в биологической фиксации молекулярного азота.
  • Бор (B ) участвует в реакциях углеводного, белкового, нуклеинового обмена и других процессах. Он необходим растениям в течение всего периода жизни. От его недостатка страдают прежде всего молодые листья и точки роста. Избыток бора вызывает ожог нижних листьев, они желтеют и опадают.

Дефицит какого-то элемента питания не замедлит сказаться на развитии растения, но зачастую бывает очень сложно определить истинную причину нарушения роста. Избыток одного элемента может ингибировать усвоение другого, поэтому внося излишек одного вещества, мы можем вызвать голодание по другому. Важно не только внести все необходимые элементы питания, но и правильно подобрать их соотношение.

Горячие Мини Продажа Бумаги Формирователь Резак Цветок Бумага Удар Ремесло…

46.79 руб.

Бесплатная доставка

(4.80) | Заказы (55)

Способы применения и дозы микроэлементов для подкормки овощей

Все мы наслышаны о роли удобрений в жизни растений, но почему-то за таковые принимаются только такие макроэлементы, как азот, фосфор, калий, а микроэлементы остаются за порогом внимания. Давайте же расширим кругозор и рассмотрим «набор» элементов питания более подробно.

Большинство микроэлементов (бор, молибден, марганец, медь, цинк и др.) входят в состав ферментов и способствуют повышению активности биохимических процессов, протекающих в растениях. Действие микроэлементов очень многообразно: они предохраняют растения от болезней, усиливают процессы оплодотворения, образования плодов и усвоения питательных веществ, участвуют в передвижении углеводов. Рассмотрим основные микроэлементы более детально.

Бор

Играет большую и многообразную роль в биохимических и физиологических процессах в растении. При недостатке бора опок углеводов из листьев и других частей растений к репродуктивным органам затруднен, в результате цветки опадают, увядает верхушечная точка роста, завязавшиеся семена оказываются щуплыми. Борное голодание уменьшает сопротивляемость болезням (у цветной капусты, свеклы, плодовых культур развивается гниль «сердечка»).

Признаком недостатка бора является то, что молодые листья теряют зеленую окраску, грубеют, затем темнеют и отмирают. У помидоров, цветной капусты, огурцов и других овощных растений недостаток бора вызывает скручивание и огрубение молодых листьев, отмирание точек роста, опадение цветков и завязей.

Борные удобрения наиболее эффективны на нейтральных дерново-подзолистых почвах. Борный суперфосфат содержит от 0,2 до 0,4 % бора, используется также борная кислота (17 %) – сухой порошок белого цвета, хорошо растворимый в воде.

Молибден

Входит в состав фермента нитратредуктазы, который участвует в восстановлении нитратного азота. Этот микроэлемент также способствует фиксации молекулярного азота. Помимо этого улучшает условия кальциевого питания бобовых и других растений. При недостатке молибдена цветная капуста приобретает желто-синий или желто-зеленый цвет, сильно грубеет. Листовые пластинки срастаются в черенки. У бобовых растений без молибдена замедляется рост и появляется светло-зеленая окраска листьев.

Из молибденовых удобрений применяют молибденовокислый аммоний (52 % Мо).

Марганец

Принимает участие в окислительно-восстановительных процессах и взаимодействует с железом в ферментных системах. При участии марганца, накапливающегося в растении, закисные формы железа переходят в окисные, что устраняет их токсичность. Марганец участвует в синтезе витаминов (особенно С), усиливает накопление сахара в корнеплодах, белков -в зерновых культурах. Недостаток марганца наблюдается на нейтральных и щелочных почвах.

На дерново-подзолистых почвах марганцевые удобрения применять не стоит, также как и на сильнокислых почвах, на которых может проявляться даже токсическое действие этого элемента на отдельные культуры. Однако на карбонатных и избыточно известкованных грунтах они оказывают положительное действие. Применяют марганцевые удобрения в виде марганцевого суперфосфата (2-3 %) и сульфата марганца (21-22 %).

Медь

Роль меди в растениях, прежде всего, связана с окислительными процессами. Она входит в состав таких важных ферментов, как полинолоксидазы, аскорбинокседазы и др. Медь оказывает стабилизирующее влияние на хлорофилл, что усиливает фотосинтез. Медь влияет на углеводный и белковый обмены.

При недостатке меди у растений развивается хлороз листьев, белеют их кончики, а у салата, шпината, гороха и свеклы по окраинам листьев образуется желто-серая полоса. Происходит повеление и засыхание кончиков листьев.

Медные удобрения чаще всего используют на торфяно-болотных почвах. Наиболее широко применяется гранулированный хлористый калий с медью (1 %). Применяется также медный купорос (24 %) – голубой порошок, который растворим в горячей воде.

Цинк

Входит в состав ряда ферментов и усиливает их активность. Недостаток цинка нарушает липоидный и углеводный обмены. В растениях содержится меньше сахарозы и крахмала и больше – редуцирующих Сахаров.

Цинк оказывает большое воздействие на скорость окислительных процессов в растениях, оплодотворение и развитие зародыша, положительно влияет на содержание витаминов С и Р, стимулирует образование у растений ростовых веществ (ауксинов). Особенно хорошо реагируют на цинк кукуруза и плодовые культуры.

При недостатке цинка также снижается содержание фосфорорганических соединений и замедляется процесс образования хлорофилла, в результате появляются пятнистый хлороз, желтуха. Повышенная чувствительность к недостатку цинка отмечена у кукурузы, сои, фасоли и других культур.

Цинковые удобрения представлены в основном сернокислым цинком (23 %). Их применяют на песчаных, супесчаных и других легких почвах.

Способы применения

Недостаток микроэлементов, которые необходимы для нормального роста и развития растений, на практике обычно восполняют путем смачивания семенного материала в растворах, содержащих эти элементы.

Способы применения и дозы микроэлементов (г/л) приведены в таблице.

Микроудобрения

Обработка семян перед посевом

Внекорневая подкормка

Внесение в почву

Сернокислый цинк

Борная кислота

0,05

Медный купорос

0,05

0,03

Молибдат аммония

0,03

На заметку: предшественники огородных культур

Строя планы на предстоящие посевы и посадки в огороде, необходимо обязательно учесть севооборот – научно обоснованное чередование культур в пространстве и во времени. Соблюдение этого правила поможет избежать многих неприятностей, которые, в первую очередь, связаны с накоплением в почве патогенов, семян сорняков и вредителей. В правильном чередовании растений поможет приведенная ниже таблица.

Предшествующая культура

Что хорошо посеять, посадить

Лук, капуста, огурцы, корнеплоды

Зеленные овощи и зелень

Картофель, лук, томаты, бобовые, морковь, свекла

Капуста

Томаты, огурцы, картофель, бобовые, капуста

Лук репчатый

Зелень, картофель, капуста, бобовые, томаты

Морковь

Капуста, бобовые, свекла, репа, томаты

Огурцы

Кабачки, тыква, капуста, патиссоны, лук, бобовые, свекла, морковь

Картофель

Капуста, огурцы, бобовые, томаты

Чеснок

Огурцы, тыква, картофель, томаты, лук, капуста

Свекла

Томаты, огурцы, лук, морковь, бобовые, картофель

Редис, репа, репка, брюква

Капуста, томаты, свекла, морковь

Бобовые

Зерновые, чеснок, морковь, зелень, лук, свекла

Клубника

Огурцы, редис, картофель, капуста, морковь, свекла

Зелень и пасленовые овощи

Капуста, свекла, морковь, картофель, зерновые

Тыква, патиссон, кабачки

Перед тем как начинать пахать или перекапывать огород, не пожалейте часок лишнего времени и уберите на участке мусор, а главное – растительные остатки. Если вы этого не сделаете, то просто будете запахивать в землю готовые рассадники множества болезней и вредителей. А простая уборка позволит избавиться от множества проблем в будущем.

На заметку

Из минеральных удобрений особое внимание при хранении необходимо уделять селитрам – аммиачной и калийной. Эти виды удобрений кроме того что очень гигроскопичны, так еще и по-жаро- и взрывоопасны. Не допускайте их смешения с легковоспламеняющимися материалами, такими как солома, опилки, торф, ветошь. А то в результате самосогревания удобрений могут произойти воспламенение и пожар.